
J .  Fluid Mech. (1967), vol. 29, part 4, pp.  781-821 

Printed in Great Britain 
781 

On the trapping of wave energy round islands 

By M. S. LONGUET-HIGGINS 
National Institute of Oceanography, Wormley, Surrey 
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It is shown that islands can trap long-wave energy in a way similar to the capture 
of a particle by an atomic nucleus. The frequencies of the captured waves form 
a discrete set, being determined by the shape of the island and the contours of 
the surrounding sea bed. If the depth at great distances tends to a constant value, 
the trapped modes must leak some energy to infinity, though the consequent rate 
of decay may be exceedingly small. The initial energy of the trapped modes may 
be absorbed from incident radiation of the same frequency or from a sharp pulse. 
The particular example of a rectilinear pulse incident on a circular island is 
discussed in some detail. 

The effect of the rotation of the Earth is to split the frequencies of a pair of 
waves progressing in opposite directions round the island. The splitting of the 
frequencies produces slow beats in the waves as seen a t  any fixed point. Slight 
asymmetry in the island induces a slow exchange of energy between each pair of 
progressive modes. 

The present investigation was suggested by the occurrence of regular oscilla- 
tions having a period of 6 min and a beat period of about 3 h in long-wave records 
taken at Macquarie Island, in the Southern Ocean. 
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1. Introduction 
During a recent visit to the University of Adelaide the author was shown a 

long-wave record made a t  Buckles Bay, Macquarie Island (lat. 54" 30' S, 
158" 58'E) by members of the Department of Mathematics. In  this record there 
appeared a pronounced oscillation of period 6 min lasting for at least 2 days. The 
amplitude of the oscillations fluctuated with a period of about 3 h. 

Macquarie Island is about 22 miles long and is surrounded by a narrow shelf 
where the depth is a few hundred metres, the whole feature standing out of water 
of oceanic depth, about 4000m. 

These circumstances led the author to consider whether it was possible for 
radiation to be trapped round the island by the form of the bottom contours, the 
characteristic frequency or frequencies being determined by the dimensions of 
the island. 

The first known instance of trapped radiation in hydrodynamics appears to be 
the 'edge-wave' of Stokes (1846). This is a type of motion possible in the neigh- 
bourhood of a plane beach inclined to a constant angle a to the horizontal. The 
wave progresses parallel to the shoreline, its amplitude diminishing exponentially 
with distance seawards (measured along the bottom). The frequency i~ is con- 
nected to the wave-number m parallel to the shoreline by the equation 

r2 = gmsina, (1.1) 

where g denotes the acceleration of gravity (see Lamb 1932, p. 260). 

Stokes'sedge-waves were generalized by Ursell(1952a), who showed that it was 
possible to have higher modes of oscillation in which there were n nodal lines 
running parallel to the shore, where n 2 0. 

Much light was thrown on this phenomenon by the work of Eckart (1950,1951) 
who considered especially waves whose length was great compared to the local 
depth of water. He pointed out, in effect, that the trapping of wave energy near 
the edge of the shoreline was due to the refraction of the waves towards the shore; 
the speed of propagation of long waves in uniform depth h being equal to (gh)&, 
waves in the greater depth of water will be propagated at  greater speed, and 
hence refracted towards the shore. 

Ursell(l951) also proved analytically the existence of trapped waves travelling 
along a submerged circular cylinder. It is now clear that we can consider the 
cylinder as a wave-guide towards which the waves are refracted by the increasing 
velocity of propagation on either side. 

Some evidence for the generation of edge waves by storms travelling parallel 
to the continental shelf was presented by Munk, Snodgrass & Carrier (1956), and 
further theoretical calculations relating to this problem have been carried out by 
Greenspan (1956)' Reid (1958) and Kajiura (1958). In particular Reid (1958) 
showed that the effect of coriolis forces on an edge-wave travelling parallel to a 
straight coastline was to increase the velocity of waves travelling in one sense 
and to decrease the velocity of waves travelling in the opposite sense. More 
recently Snodgrass, Munk & Miller (1962) have shown the probable existence of 
edge waves in the spectrum of long waves along the coast of California. 
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Now in the case of an ideal circular island of sufficiently large radius, it is 
evident that any small portion of the coast can be regarded as straight locally, 
and hence we shall expect some waves to be guided round the island by the 
bottom topography. Moreover, we can predict that for certain wavelengths and 
frequencies, a trapped wave, after describing one complete circuit, will remain in 
phase with itself. Hence we expect a discrete set of eigenfrequencies, charac- 
teristic of each island. It remains to be seen whether the energy in each mode is 
completely trapped, or whether some is radiated to infinity. In  the latter case the 
corresponding eigenfrequency should be complex. The question of how such 
modes may be generated has also to be investigated, and also what is the effect of 
coriolis forces. 

In  the present paper we investigate the problem by stages beginning with 
waves in a uniform depth of water and without coriolis forces; next showing the 
manner in which waves are trapped along a straight discontinuity, and then 
proceeding to the case of circular symmetry. It is shown that for a circular ‘sill ’ 
eigenfrequencies do exist, but if the depth tends to a uniform value at great 
distances from the centre, then some energy must leak away to infinity. Never- 
theless, the rate of decay of some eigenfrequencies is extremely slow, so that the 
waves are in effect trapped. The situation is somewhat analogous to the slow 
decay of a resonating bell, which radiates sound to infinity. 

In  Q 8 we investigate the response of the system to a pulse of energy sweeping 
across the horizontal plane. This corresponds roughly to striking the bell. It is 
shown that energy can indeed be injected into the trapped modes in this way. 

In  $ 9  we consider how far the results for the circular island may be applied to 
islands of other shapes, and in $ 10 we consider the effect of the rotation of the 
earth. The rotation is shown to cause a splitting in the frequencies of modes 
progressing respectively clockwise and anticlockwise round the island. The 
frequency-splitting in turn produces beats in the wave amplitude. 

The conclusions are summarized in $13. 

2. The shallow-water equations 

Some light can be thrown on the phenomenon of wave trapping by considering 
the simplest possible case: that of long waves in shallow water. 

Let x and y be horizontal Cartesian co-ordinates, and let u, v be the corre- 
sponding components of the velocity. Let c(x, y ,  t )  denote the elevation of the 
free surface above its equilibrium level. Then on the assumption that the vertical 
acceleration is small compared to g (the acceleration of gravity) it follows that 
the excess pressure above the hydrostatic pressure equals pgc, where p is the 
density. Hence the linearized equations of motion may be written 
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Assuming that cis small compared to the depth h(z ,  y) of water in the undisturbed 
state, we have also the equation of continuity 

a a 
at ax aY 

= --(hu)-- (he). 

On differentiating both sides of (2.2) with respect to t and substituting for u and v 
from equations (2.1) we have 

= gh VzC+ V(gh) . VC, 
where V 2  denotes a2/ax2 + a2]ay2. Thus 

( V 2 - i g )  c+hVh.Vg= 1 0. 

At a discontinuity in h we shall assume that 

6 is continuous 

and that the normal component of the total flow is continuous, that is 

hu.  n is continuous, u = (u, e). (2.6) 

This assumption has been shown by Bartholomeusz (1958) to give correct results 
for the reflexion coefficient of long waves incident on a step, even though the 
vertical acceleration is not small locally. A rigid wall is equivalent to h = 0. 
Hence on both sides of the wall 

hu.n = 0. (2.7) 

When the motion is simple-harmonic, we may write 

CK e--bt 
9 

where c denotes the radian frequency. Then (2.4) becomes 

1 
(Vz+$) y + , V h . V g =  0. (2.9) 

In  the special case when the bottom is flat, V h  vanishes and equation (2.8) 
reduces to 

( v 2 + $ )  y = 0. (2.10) 

The boundary condition (2.6) becomes 

at; h, - is continuous. 
an (2.11) 
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3. The trapping of waves on a straight ledge 

representing a simple harmonic wave of length L = 277/(Z2+m2)* and period 
T = 2n/cr, satisfies equation (2.10) provided that 

Hence the speed of propagation c is given by 
L 
T (12  + m2)6 

The expression = Aexp[i(lx+my-crt)] (3.1) 

l2  + m2 = cr2/gh. (3 .2 )  

(3.3) 
0- 

- (g@, c = - = - - -  

by equation ( 3 . 2 ) .  This is the well-known formula for the speed of propagation 
of waves in shallow water of depth h. 

If in (3.1) we suppose that I ,  say, is imaginary, then the solution increases 
exponentially in one horizontal direction, the negative x-direction. The energy 
to the right of any given line x = constant is finite. However, to exclude infinitely 
large wave amplitudes as x -+ - 00, the left half of the plane must also be excluded. 
A rigid barrier at x = constant is not sufficient, since the boundary condition 
there cannot generally be satisfied. 

FIGURE I. Waves near a straight discontinuity in depth. (a )  Section in a 
vertical plane; ( b )  the wave crests in plan view. 

Fluid Mech. 29 60 
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However, we shall see that with a change in depth along the line x = constant 
it is possible to have finite energy in the right half-plane. 

Suppose then that along the line x = 0 there is a discontinuity in the depth, 
with h = h, when x < 0, and h = h, > h, when x > 0, as in figure 1. Let us consider 
waves which vary harmonically in the y-direction with wave-number m and try 

} (3.4) 
AcosI,x+BsinZ,x (x< O ) ,  

(x > 0). i C e-2; 2 
[= exp [i(my - at)] x 

These expressions satisfy equation (2.10) provided that 

that is to say 

To satisfy the boundary conditions (2.5) and (2.6) a t  x = 0 we must have A = C 
and BI, h, = - Cl; h, respectively. So writing for convenience A = 1, h, we have 

1, h, cos 1,x- I ;  h, sin 1,x (x < O ) ,  

I ,  h, e-zL z (x > 0). 
[ = exp [i(my - at)] x 

The form of the solution is as shown in figure la:  in the shallower depth of 
water to the left of the discontinuity the solution is sinusoidal; in the deeper 
water to the right it is exponential. A plan view of the solution is shown in 
figure 1 b, the solid lines on the left representing wave crests; and the broken lines 
on the right the crests of waves decreasing exponentially as x increases. 

The solution can also be considered from the point of view of wave refraction, 
as follows. In  the region x < 0 the solution (3.8) may be written 

5 = @[exp [i(Z,x + my- at+ S)] +exp [i( - I ,  x+ my- at - S)]], (3.9) 

where 
I’ h 

R = (12, h2, + Ih2hi)9, 6 = tan-,=. 
4 hl 

(3.10) 

The first term in square brackets in (3.9) represents a wave propagated in the 
shallow water h = hl to the left of the discontinuity. The angle of incidence at the 
discontinuity has a sine equal to m/(Z:+m2)*, that is to say m(gh,)t/a, by (3.5). 
The critical angle, on the other hand, has a sine given by cl/c2, = (hl/h2)*. We see 
then from (3.8) that the angle of incidence exceeds the critical angle and hence 
the waves are totally reflected, the reflected wave being given by the second term 
in (3.9). On the right of the discontinuity there is only an exponentially decaying 
‘fringe’. At the barrier itself the wave undergoes a phase-change equal to 26. 

If now a vertical barrier is placed along the line x = -a, forming a ‘ledge ’ of 
width u and depth h, between x = -a  and x = 0, then we must also satisfy the 
boundary condition (2.7) a t  the barrier. We have then 

(3.11) 

t Without loss of generality we may assume I, and l i ,  if real, to be positive. 
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or RZ, exp [i(my - d)]  sin ( 1 ,  a - 8) = 0. (3.12) 

Hence l,a = 6+nn, (3.13) 

where n is an integer. Regarded in another way, the condition (3.11) is equivalent 
to specifying that the phases of the incident and reflected waves a t  the barrier are 
equal. Hence the total phase-change in crossing and recrossing the shelf normally 
(y and t held constant) is (24  a - 26) and this must be equal to 2nr.  From (3.13) 

(3.14) 
I’ h we have 

tan(l,a) = tan6 = 2. 
I ,  h 

lh2 = (1 - h,/h2) m2 - (h,/h2) l;. (3.15) From (3.5) we have 

So on substituting in (3.14) we find 

Under the conditions of our problem h2/h, > 1, so that for given non-zero values 
of m and a the above equation has a discrete set of solutions. Thus for a shelf of 
given width a and for a given wavelength 277/m along the shelf there exists a 
discrete set of modes in which the energy is trapped over the shelf. The corre- 
sponding wave frequencies are found from the relation 

6 U 2  
- = (ma)2. 
9hl 

(3.17) 

On squaring both sides of (3.16) we obtain the relation 

(4 a)2 [tan2 (4  a)  + (h2/hl)I = (ma)2 (h2/h*) (h2/h1- I), (3.18) 

which is equivalent to equation (3) of Snodgrass et al. (1962). These authors have 
computed the frequencies corresponding to real values of the wave-number I , .  
We may note in passing that the equation (3.18), since it is derived from squaring 
(3.13) contains aIso solutions corresponding to the situation when is negative. 
These represent waves whose amplitude increases exponentially with distance 
from the shelf. Hence they do not correspond to trapped waves. 

We note that (3.18) can also be written 

(3.19) 

where z = Z1a, 

J Q = P (P + 1) 

(3.20) 

It can be shown that besides the real solutions to this equation there exist also 
solutions with z complex and @(I;) < 0. These represent waves whose amplitude 
is a function of x both over the shelf (x < 0) as well as in the deeper water. Their 

60-2 
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frequency is complex and their energy increases or decays exponentially t with 
the time t .  Later it will be seen that analogous modes occur also in the solution of 
the period equation for a circular island (see 5 6). 

4. Parallel bottom contours: the general case 
Consider now the general case in two dimensions when the mean depth h is a 

function of x only. The contours of h = constant are then straight and parallel 
to the y-axis. 

The differential equation (2.9) reduces to 

where a prime denotes differentiation with respect to x. Let us consider waves 
which are simple-harmonic in the y-direction with constant wave-number m. 
Then we have 

= X(x) exp [i(my - at)] (4.2) 

and substitution in (4.1) gives 

which can also be written 

(4.3) 

(4.4) 

The behaviour of X(x) depends upon the sign of the final term. For writing 
hX’ = Y we have 

X‘ = ( l / h )  Y ,  
Y ’ = - (  a 2 / g  - m2h). (4.5) 

If ( v2/g - m2h) > 6 > 0 then by plotting X and Y as functions of x it is easy to see 
that the point ( X ,  Y )  describes a path enclosing the origin, that is, X and Y are 
oscillatory functions of x. On the other hand if (v2/g - m2h) < 6 < 0 as x tends to 
infinity, then X and Y both tend to infinity or both tend to zero as x -+ 00. 

Since we are considering shallow water (h  < L),  we are not free to assume that 
h -+ co as x + m. However, we may suppose that h, tends to a finite value h,, say. 
Then the behaviour of X is sinusoidal or exponential a t  infinity according as 
h, < a2/gm2. In  order that the waves shall have finite energy over the range 
(0 ,  co) it  is necessary that h, r2/gm2 and that we choose the solutionX tending 
to 0 as x -+ co. If h + h, as x -+ 00, and h -+ h-, as h + -co then in general we 
have an eigenvalue problem to solve for X .  

If on the other hand h, < a2/gm2 then either the total energy is infinite or else 
there is a slow leak of energy to and from infinity in the x-direction. 

t These modes are not discussed by Snodgrass et al. (1962) who are concerned only with 
real values of cr. Budden (1961) calls such decaying modes ‘leaky’. Snodgrass et al. use the 
same term in a different sense. 
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It is clear that for any given value of h,, there will always be frequencies g and 
wave-numbers m such that h, > a2/gm. Hence on a straight coastline we expect 
that there will always be some modes which are trapped at  the shoreline. The 
contrast with the circular shoreline will now become apparent. 

5. Circular bottom contours 
Let r and 6' be polar co-ordinates in the horizontal plane, and suppose that h 

is a function of r only. The bottom contours are then circles centred on the origin. 
The differential equation (2.10) reduces to 

where 

and a prime denotes differentiation with respect to r. Let us suppose also that 
ccc eine where n is an integer, that is 

5 = R(r) exp [i(n6' - at)].  

Then on substituting in (5.1) we have 

which can also be written 

(hrR')' + (5 - $) rR = 0. 

(5.3) 

(5.5) 

If we let hrR' = S then we have 

(5.6) 

(5.7) 

and from (5.5) S' = - (a2/g - n2h/r2) R. 

A similar argument then shows that R is oscillatory or exponential according as 

a2/g $ n2h/r2. 

Now if we suppose that as r + co then the depth h tends to a constant vaIue h,; 
the right-hand side of (5.7) must tend to 0 and so ultimately a2/g exceeds n2h/r2. 
Hence under these conditions the solution is oscillatory at  great distances, and 
trapped waves are impossible, with circular symmetry. We shall see, however, 
that if the wave-number is sufficiently large, then the loss of energy to infinity 
can be made exceedingly small. 

The physical reason for the impossibility of perfect trapping is as follows. The 
waves tend always to be propagated with the local velocity (gh)g. With circular 
symmetry, the average anguZar velocity of the waves about the centre is then 
(gh)*/r. In order that the wave energy shall be refracted inwards, this velocity 
must increase, or at  least not decrease, as r increases, that is to say 

1 
hr 

R'= -S 
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This implies that o3 constant; h constant x r2. (5.9) r 

That is, h must increase at least like r2 for trapping to be possible. 

must change sign at a critical radius ro say. This will be given by 
Generally, if at some distance from the centre (a2/g - n2h/r2) is negative, it 

n2gh n2c2 
T i = - -  -- 

cT2 a2 ' (5.10) 

where c = (gh)t is the local velocity of propagation of free waves. 

h is everywhere uniform. Then (5.4) becomes 
The foregoing conclusions are illustrated by the particular case when the depth 

of which the general solution is 

R = AJ,(kr) + BY,(kr) 

where 

(5.11) 

(5.12) 

(5.13) 

Now J, and Y, have the following asymptotic forms for large n (see Jefieys & 
Jeffreys 1950, 3 21.06). When 6 > n, 

u = cos-l (nit); I 
1 

2nm tanh v 
exp [ - n(v - tanh v)] , 

- ( n;rr t:nh 
exp [n(v - tanh v)], (5.15) 

x = cosh-l(n/l), J 
.(see also Watson 1922 $8.4)?. Thus when E < n the solutions are exponential, 
and when E > n they are sinusoidal. The transition comes when 

k r = g = n  (5.16) 

that is to say 

which is the turning point given by (5.10). 
It follows that the solution 

5 = J,(kr) exp [i(ne - ct)] 

(5.17) 

(5.18) 

t These formulae, generally attributed to Debye (1909), were first obtained by L. V. 
Lorenz (1890). For further terms see Bickley (1943). 
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can be interpreted in the following way (see figure 2). In  the region kr > n the 
solution is wave-like and equation (5.14) shows that the wave-number in the 

n- (tanu-a), 
radial direction is given by d 

dr 
du 

= n(sec2u- 1)  -, 
dr 

du at 
= ntanzu- - 

dc dr’ 
U 

= n tan2 u cosec u - k ,  

= ksinu, 

= (k2 - nZ/r2)+. 

c2 

(5.19) 

FIGURE 2. The form of the function J,(kr) cine when n = 10. 

The wave-number in the transverse direction is njr. Hence the total wave- 
number is 

(5.20) 

which is a constant. Hence the wave-length of the waves is a constant, and the 
waves are propagated locally with the free-wave velocity (gh)*. Moreover, the 
angle between the local wave-number and the radius vector is equal to (&r - u), 
which shows that the perpendicular from the origin to the ray-path has a length 
r cos u equal to nlle. Hence the ray-paths are straight lines tangent to the critical 
circle r = n/k. Incidentally this provides us with an asymptotic method of con- 
structing the phase lines of the Bessel function solution (5.20): draw the tangents 
to the fixed circle r = n/k, and then construct the ray orthogonals. 
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A precisely similar description applies to the behaviour of the second solution 
Ccc Yn(kr) exp [i(nO - at)] outside the critical circle, except that the waves repre- 
sented by the latter are in quadrature with those represented by the first solution. 

The pattern of crests of J,(kr)eine is shown in figure 2. Outside the critical 
radius r = nfk the waves have the form of spirals so arranged that the local 
wavelength is everywhere constant. At large distances the crests are almost 
transverse. As r diminishes they must turn and become more radial, in order to 
maintain the same number n of oscillations round the circumference of each 
circle. At the critical radius their crests are radial and then can turn no more. 
When r < n/k the wave-number in the radial direction become imaginary and the 
waves increase or decrease exponentially inwards; J, decreases exponentially, 
and Y, increases exponentially as r diminishes. In  fact Y,, as is well known, has 
a logarithmic singularity at  r = 0, but this is over-shadowed by the factor r-n 
which represents an almost exponential increase as r -+ 0. 

In  the sinusoidal region r > n/k, the asymptotic expressions (5.16) show that 
the amplitude of the oscillation is proportional to (tanu)-* and hence to r-9 as 
r -+ co. So the energy density falls off as r-l, and the energy per unit distance r 
from the centre is a constant. The total energy of the disturbance is infinite. In 
this sense the energy is not trapped. t 

In the neighbourhood of the critical radius neither of the asymptotic expansions 
(5.16) or (5.17) is applicable. However, in that case it may be shown that 4, and 
Y, are described asymptotically by Airy functions (see Blver 1954). 

An analogous interpretation may be given of the Hankel function solution 

C = H $)(kr) exp [i(nO- at)] 

and similarly of the solution with H(:), where 
H ( i )  = J n -iy n, ‘1 
HE) = J, + iY,. 1 

(5.21) 

(5.22) 

The asymptotic expansions (5.14) show that for large values of fl  greater than n 

and so the solution (5.23) is given by 

CTt - $ 7 4 ,  

(5.23) 

(5.24) 

where u = arc cos (nlkr) .  This represents a wave rotating about the origin in the 
positive (anticlockwise) direction, and with the arms spiralling outwards to 
infinity. There is clearly a net flux of energy radially outwards, given by the time- 
mean of pgC2.  2nr sin u . c, that is to say 

P = 4pg2h/a. (5.25) 

Such a wave is possible physically only if there is a source of energy at the origin. 
Since J, = +(HE) + H i ) )  the first solution discussed above, namely (5.18) may be 
regarded as the sum of two solutions, in one of which the energy is spiralling 

t This sense of ‘trapping’ appears to be more in accordance with normal usage than 
that suggested by Chambers (1965). 
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outwards, and the other in which it is spiralling inwards, the radial components 
of the two fluxes being equal and opposite. The tangential components of the 
flux are in the same (anticlockwise) sense and reinforce one another. We may note 
that since motions proportional to J, and Y, require a source and sink of energy 
at infinity in order to maintain them, they cannot be said to represent trapped 
wave motions. 

An important property of the Hankel function solution (5.22) is that inside the 
critical circle it tends to be dominated by the term involving Y,, which as we saw 
increases exponentially towards the centre. Hence H:), regarded in the opposite 
way, decreases almost exponentially as one travels outwards within this region. 
The above property is very relevant to the following discussion. 

6. Free waves round a circular sill 
To represent a circular sill or sea-mount of radius a, let us suppose that the 

mean depth of water is given by h = h, when 0 < r < a and h = h2 when r > a 
(see figure 3a). Since 5 is to be finite at  r = 0 the second solution Y, is excluded 
when r < a. Let us then try 

where A and B are constants and where 

The solution is illustrated in figure 3b .  Inside the sill (that is when r < a)  the 
solution consists of two systems of waves propagated along straight trajectories 
tangent to the circle k,r = n. This circle we may call the inner critical circle. 
Outside the sill the solution consists of waves propagated outwards, along 
straight trajectories all tangent to the circle k,r = n (the outer critical circle). 
Hence there is necessarily some loss of energy to infinity. However, if the distance 
between the outer critical circle and the edge of the sill is more than a wave-length 
2nlk2 then because of the exponential decrease of H:) noted above, the amplitude 
of the waves at the outer critical circle is exponentially small compared to the 
amplitude at the edge of the sill. Hence the loss of energy to infinity in one wave 
period will be very small compared to the total energy contained over the sill. 
The waves are then practically, but not absolutely, trapped. 

From the above discussion it appears that two necessary conditions for the 
existence of trapped modes are, first, that the ray paths in the interior must make 
with the normal at the sill an angle greater than the critical angle. Hence 

Secondly, the outer critical circle must be sufficiently far from the edge of the sill. 
Thus 
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r 

FIGUFLE 3. The form of free waves trapped by a circular sill. (a)  A radial cross-section; 
(b )  plan view of the wave crests. 

Since kl/k2 = (h2/hl)t it  appears that the f i s t  condition (6.3) is equivalent to 
n > (hl/h2)* (k2a) ,  so that if the second equation (6.4) is satisfied so also is (6.3). 

The above arguments also supply us with an approximate estimate of the 
frequencies of the trapped modes. For from (5.24) the phase-change after crossing 
from the edge of the sill to the inner critical radius and back again (keeping &' and 
t constant) is given by 

n 
2[n(tanu-u)-&~], cosu = -. 

k1a 

The constant phase-shift in- is typically associated with a wave caustic such as 
the inner critical circle. The above phase must be equal (mod2n-) to the phase 
shift at  the boundary. Approximating the boundary by a straight edge as in 5 3, 
we see that this phase shift is given by 
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where 1, and 1; are given by the same formulae (3.5) as before. Here rn denotes the 
wave-number along the edge of the sill, that is to say 

m = n/a, am = n. (6.7 1 

lla = (k;  - rn2)* a = n tan u (6.8) 

and from (3.14) lka = n ,/[I- (h,/h,) sec2u]. (6-9) 

Hence also 

So on equating the phases in (6.5) and (6.6) and taking the tangent of half each 
angle we obtain 

tan[n(tanu-u)-&r] = ,/[(h2/hl){(h2/hl- 1)cot2u- 111. (6.10) 

Given hJh, and n, this equation may be solved for u. A graphical solution when 
n = 4 and hl/h2 = A, t and is shown in figure 4. The corresponding non- 
dimensional frequencies may be defined by 

-101 I 
0.0 0.5 1 .o 

U 
FIUURE 4. Graphs of the functions 

fl(u) = tan [n(tan u -u) -&a], 

f z ( 4  = Y/C(hz/h,) {(hZ/hI - If cota a- UI, 
when n = 4 and hl/h, = A, 8 and 

(6.11) 

1.5 
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The numerical values of for n = 1 to  8 and with the same three values of h,/h, 
are given in table 1. 

t (7 
a -  
16 

2 

4.909 
7.683 

3.897 
- 

n =  
A 

3 4 5 

6.196 7.423 8.617 
9.436 10.823 12.134 

11-898 13.942 15-396 
- 16.000 18.433 

- - - 

5.474 6.843 8.114 
- - - 

- - 6.667 

6 

9.789 
13.407 
16.754 
19.954 
22-901 

9.333 
11.972 

7.986 

7 

10.944 
14.653 
18.069 
21.347 
24-502 
27.332 

10.521 
13.597 

9.247 

TABLE 1. Approximate frequencies of trapped modes of oscillation, 
from equation (6.10): values of = aa/(ghl)k 

------- 
8 

12.086 
15.880 
19.356 
22.691 
25.927 
29.042 

11.686 
15.022 

10.484 

To obtain accurate values of the frequencies and rates of damping we return 
to the solution (6.1) and apply the boundary conditions (2.5) and (2.6) at theedge 
of the sill ( r  = a).  We have then to satisfy the two equations 

(6.12) 
AJ,(k, a )  = BH,(k2 4, 

A k, h, JL( k, a)  = Bk, h, Hp:(k2 a) ,  

where we have written H, for HE) and a prime denotes differentiation with 
respect to the argument. For brevity write 

I 
(6.13) 

representing a dimensionless frequency, and also 

a constant parameter. Then equations (6.12) may be written in matrix form 

(6.15) 

In  order that a solution exist the determinant of the matrix must vanish and so z 
must be a zero of the function 

F(Z) = J,(z) HA(s2) - sJA(2) H,(€X). (6.16) 

We know that the roots of this equation cannot be real, for the following reason. 
We have seen that there must be a slow leak of energy to infinity; hence the modes 
must decay in time, and (T and likewise z must have a small imaginary part (so 
that 7 > 0) .  We have then to search for the zeros of F(z )  in the lower half-plane. 

We shall take the cut in the complex plane associated with the function 
H,(sz) to be along the negative imaginary axis. Then the zeros in the left half- 
plane are simply the reflexion of those in the right half-plane. Hence it is sufficient 
to find the zeros of F ( z )  in the lower right half-plane (the fourth quadrant). 
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The function F(z )  has no singularities in the finite part of the plane except at 
the origin, where it behaves asymptotically like z-l. Thus it is slightly more 
convenient to deal with the function 

G(z )  = z P ( z ) ,  (6.17) 

which is finite but not zero near the origin.? 
We may expect (complex) zeros in the neighbourhood of the real values which 

have already been estimated in table 1 .  But apart from the zeros representing 
trapped modes it can be seen that there must also be an infinite sequence of zeros 
representing modes which decay rapidly with time. These are modes which are 
wavelike both inside and immediately outside the sill. Analytically, if we adopt 
the asymptotic formulae of Q 5, we see that for sufficiently large values of g 

[esin(z-p)+icos (z-,!l)]exp [i(ez-,!lP)], (6.18) 

where ,8 denotes (Qn + 4) 7 ~ .  The exponential factor cannot vanish. And since 
0 < e < 1 it  is easy to see that the vanishing of the right-hand side implies that 

g = (&n+&+rn)rr,  tanh7 = e, (6.19) 

2 
rre4 

G(z )  N - 

where m is an integer. This represents a sequence of zeros along the line 

7 = tanh-le 

below and parallel to the real axis, and spaced a t  intervals of 7 ~ .  Note that when 
e = 4, Q and 2 we have tanh-l E = 0.255, 0.549 and 0.973 respectively. 

Starting with the approximate values of x given in table 1 and equation (6.19), 
the corresponding roots of G(x) were determined numerically by means of 
successive approximations zk (k= 1 , 2 , 3 ,  .. .) where z1 denotes the first approxi- 
mation to any given root and 

(6 .20)  

Convergence was generally rapid. A typical set of results, for hl/h2 = e2 = &, can 
be seen in figure 5 a .  The zeros corresponding t o  a particular value of n have 
been joined by a full curve. When n = 6 ,  for example, we find a sequence of zeros 
which for low values of the frequency, lie extremely close to the real axis (the 
vertical scale is exaggerated relative to the horizontal scale). These zeros repre- 
sent the modes which are virtually trapped by the circular sill. Following the 
sequence of zeros in figure 5 a  to the right ([ increasing) we find that the zeros 
leave the neighbourhood of the real axis and tend ultimately to the values given 
by (6.19).  The transition from the trapped modes to the damped modes takes 
place between [ = n and 

The accurate values of the zeros x = [ - i7 corresponding to the trapped, or 
almost trapped modes, are given in table 2. Comparison with table 1 will show 
that the real parts of the frequencies agree quite well with the asymptotic 
approximation even when the damping, represented by 7, is appreciable. 

i There is however a cut through the origin. We take this to be from 0 to - i co along the 

= n/e.  

negative imaginary axis. 



798 M .  S.  Longuet-Higgins 



On the trapping of wave energy round islands 799 

However, 7 may in some cases be extremly small, as was predicted. When 
hJh,  = e2 = & and n 2 4, the damping of the waves, as given by the ratio 715, 
is of order or less. 

O- 

I I I I I I I 

FIGURE 5 (6). The zeros of G(z) in the fourth quadrant of the z-plane, when 
hJh, = A: the remaining zeros. 

The inner and outer critical radii are also shown in table 2, from which it can 
be seen that the damping is least (that is the trapping is most effective) when the 
outer critical radius is appreciably larger than a,  that is to say when the condition 
(6.4) is satisfied. As we saw, this is because of the exponential decrease of the 
solution between the edge of the sill and the outer critical circle. 

In  figure 5a the first, or left-hand, zero of each of the sequences corresponding 
to given values of n, has been joined to the others by a broken curve. Similarly, 
the second zeros are joined by another broken curve, and so on. 

In  order to  see whether all possible zeros of G(x) had been found by the pro- 
cedure just described, a check was made of the number of zeros of G(z) lying 
within the square (0 < 5 < 50,O < 7 < 50) by means of RouchB’s theorem 

var, (arg G ( z ) )  = Zn(2- P). (6.21) 

Here the left-hand side represents the variation of the argument of G(z) round 
the boundary I’ of the square, and 2 and P denote the number of zeros and poles 
respectively contained within the contour. Since there are no poles within I?, 
we have P = 0. So by computing the left-hand side we deduce 2. 

It turned out that several zeros had not been accounted for. By a systematic 
search of the area the others were then found. They are shown in figure 5b (for 
h,/h, = &). In  this figure the vertical and horizontal scales are equal, so that the 
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Frequency 
n E 

1 3.656 
4.921 { 8.219 
6.209 
9.456 

12.818 
7.447 

10.798 
14.027 
17.426 
8.646 

12.125 
15.358 
18.624 
9.821 

13.408 
164'23 
19.922 
23.235 
10.978 
14-661 
18.055 
21.299 
24.496 
27.856 
12.121 
15.890 
19.352 
22.662 
25.869 
29.083 
32.480 

2 4.796 
3 5.632 
4 6.799 
5 8,021 

9.240 { 12.832 
10.444 { 13.823 
11.630 { 15.025 

5 6.8903 
6 8.124 
7 9.308 
8 10.467 

Damping 
7 

0.1756 
0-6309 x 10-1 
0.2774 
0.1246 x 10-1 
0.1566 
0.3383 
0.2172 x 
0.4613 x 10-1 
0.2462 
0.3798 
0.3613 x 
0.1091 x 10-1 
0-9563 x 10-1 
0.3237 
0-5798 x lop4 
0-2362 x 
0.2815 x 10-1 
0.1553 
0.3870 

0.4843 x 
0-7339 x 
0.5441 x 10-1 
0.2201 
0.4370 
0.1368 x 
0.9485 x 
0.1785 x 
0.1642 x 10-1 
0.8921 x 10-1 
0.2861 
0.4755 

0.9019 x 10-5 

0.7563 
0.6323 
0.3703 
0.2194 
0.1278 
1.1768 
0.7243 x 10-1 
0.7745 
0.3993 x 10-1 
0.5326 

1.3974 
1.2176 
1.0653 
0.9381 

Critical radii - 
nlE n l ( 4  

(a) 8 = 0.25 
0.27 
0.41 
0.24 
0.48 
0.32 
0.23 
0.54 
0.37 
0.29 
0.23 
0.58 
0.41 
0.33 
0.27 
0.61 
0.45 
0.36 
0.30 
0.26 
0.64 
0.48 
0.39 
0.33 
0.29 
0.25 
0.66 
0-50 
0.41 
0.35 
0.31 
0.27 
0.25 

1.09 
1.63 
0.97 
1.93 
1.27 
0.94 
2.15 
1.48 
1.14 
0.92 
2.31 
1.65 
1.30 
1.07 
2.44 
1.79 
1.44 
1.20 
1.03 
2-55 
1.91 
1.55 
1.31 
1.14 
1-00 
2.64 
2.01 
1.65 
1-41 
1.24 
1.10 
0.99 

( b )  E = 0.50 
0.42 0.83 
0.53 1.06 
0.59 1.18 
0.62 1-25 
0.65 1.30 
0.47 0.94 
0.67 1.34 
0.51 1.01 
0.69 1.38 
0.53 1.06 

(c) E = 0.75 
0.73 0.97 
0.74 0-98 
0.75 1.00 
0.76 1.02 

D 

D €7 

0.4363 9.938 
0.2560 16.23 
0.5588 8.057 
0.1158 37.17 
0.4109 10.50 
0.6194 7.324 
0.04962 91-37 
0.2180 18.90 
0.5289 8.593 
0.6563 6.913 
0.02066 228.8 
0.1073 39.37 
0.3142 13.14 
0.6202 7.665 
0.008424 581.1 
0.05068 85.81 
0.1703 24.21 
0.4046 10.42 
0.6891 7.122 
0.003374 1496 
0.02322 191.8 
0.08791 47.92 
0.2358 17.34 
0.4895 8.896 
0.7392 6,765 
0.001332 3895 
0.01038 437.8 
0.04379 98.12 
0.1304 31.76 
0-3022 13.55 
0.5689 7.954 
0.7741 6.512 

1.086 2.871 
1.033 3.269 
0.6567 3.546 
0.4877 4.447 
0.3731 5.841 
2.199 3.738 
0.2855 7.882 
1.075 2.776 
0.2162 10.83 
0.8038 3.018 

1.025 0.978 
1.057 1.158 
1.035 1-296 
0-9971 1.417 

D 

mJ)* 
2.178 
1.838 
1.480 
1.665 
1.351 
1.190 
1.560 
1.235 
1.138 
1.021 
1.479 
1.181 
1.037 
1.010 
1.412 
1.139 
0.993 
0.920 
0.919 
1.356 
1.102 
0.966 
0.876 
0.843 
0.847 
1.308 
1.070 
0,942 
0.855 
0.796 
0-789 
0.788 

1.140 
1.095 
0.828 
0.735 
0.687 
1.132 
0.656 
0.657 
0.635 
0.568 

0.441 
0.448 
0.438 
0.424 

TABLE 2. Accurate values of the frequencies of trapped modes, and response coefficients. 
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15 20 0 5 10 
I 1 1 I I I I 

- 

- 

- 

hllhz = a - 

8 

I I I I I I I 

new zeros represent modes which are highly damped compared with those in 
figure 5 a. If the search were carried across the negative imaginary axis onto the 
second sheet of the Riemann surface, other zeros would presumably be found. 

The two systems of zeros in figures 5a and 5 b  appear somewhat distinct. This 
is when the contrast in the depths h, and h, is quite great: h,/h, = A. Figures 6 a 
and 6 b  show similar results when the contrast is less: h,/h, = k. Then there are 
already very few trapped modes (cf. tables 1 and 2 ) .  The main sequence in 
figure 601 is somewhat further from the real axis, and in figure 6b the zeros are 

51 
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closer. When the depths are quite comparable, hJh, = A, the zeros are as shown 
in figures 7 a and 7 b. The curve marked a in figure 7 a is the same curve, though 
on a different vertical scale, as the upper curve in figure 7 b, so that the two 
systems of solutions have now been brought together. 

The ‘second’ system of zeros, namely those shown in figures 5b, 6 b  and 7 b,  
correspond to modes with a high rate of damping. For this reason they are less 
important in the context of free oscillations, But their existence must be borne 
in mind in the solution to the problem of forced motions, to be described in the 
following section. 

0 5 10 15 20 25 
I I I I I 

- 1Oi 

- 2Oi 

(4 

0 5 10 
I I I I 

FIGURE 7. The zeros of G(z )  when h,/h, = 1%; (a) the main sequence; 
( b )  the remaining zeros. 
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7. The excitation of trapped modes on a circular sill 
It is interesting to enquire how modes of oscillation such as those described in 

the previous section might be excited by various mechanisms. Among the 
simplest of suchexciting mechanisms is an incident wave propagatedfrominfinity 
through deep water. In  the presence of the sill we shall expect to find part of the 
incident wave converted to energy over the sill, and part scattered to infinity in 
the horizontal plane. 

Consider for a moment the situation that would be expected according to ray- 
theory (figure 8). A plane wave approaches in deep water from the left. The ray- 
paths are parallel until they meet the edge of the sill, where they are refracted 
both on crossing into the sill and on leaving it. There is a partial focusing of the 

FIGURE 8. The ray-paths for a plane wave incident on a circular sill, when h1/& = &. 

wave energy. On the other hand the refracted rays over the sill all make an angle 
with the normal which is less than the critical angle, defined in 0 3. Hence they 
pass closer to the centre of the sill than any of the rays corresponding to the 
trapped modes. In  other words the ray-paths of the incident waves and of the 
trapped waves cannot coincide over the sill itself. 

One might therefore suppose that it would be difficult for an incident wave to 
excite any of the trapped modes of oscillation. On the other hand the rate of 
decay of the trapped modes is so small, that even a small input of energy may be 
sufficient to generate appreciable amplitudes. It is clear that in order to calculate 
the amplitude of the response we need a more exact analysis than ray-theory can 
provide. 

Let us then consider the response of the system described in Q 6 caused by a 
disturbance which has the form of a plane wave at  infinity. Thus suppose that at  
large distances from the origin 6 w cm where 

Crn = exp [ i (k ,  x - crt)] (7.1) 

and cr is real. This by itself satisfies the required differential equation (2.10) in the 
deeper water h = it, and so represents a free wave. However, it  does not satisfy 

51-3 
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the boundary condition (2.6) at r = a. Let us expand CW in a harmonic series in 8. 
By a well-known identity, (7.1) can be written 

W 

Q = C inJ,,(k,r) exp [i(& - crt)]. 
n=- m 

So in place of the free mode (6.1) we now assume 

An Jn(k1r) 
B, B,( k2 r )  + i"J,(k, r )  ( r  > a). 

m 

= C exp[i(nO-ut)] x 
,=-a 

The terms in A ,  represent motions excited over the circular sill, and the terms in 
B, represent energy scattered to infinity. On applying the boundary conditions 
at r = a, and equating coefficients of exp [i(nO- crt)] we find 

(7.4) 
A ,  J,(kl a )  = B, H,(k2 a)  + inJ,(k2 a) ,  

A ,  k, hl JA(kl a)  = B, k, h, HA(k2 a )  + k, h, inJ;(k2 a),  

and so instead of the homogeneous equations (6.15) we have to  solve the non- 
homogeneous system 

Since the frequency cr is real by hypothesis, so also is z, and the matrix of the 
system cannot vanish. The system (7.5) therefore possesses a unique solution. 
Making use of the identity 

(7.6) 
2i 

J,(EZ) HA(e2) - J;(€x) H,(€X) = - 
7TEX 

we find 

and 

2in+l 
A ,  = ~ 

7~ E G(x) (7.7) 

where F ( z )  and G(x) are given by (6.16) and (6.17). These values of A, and B,, 
when substituted into (7.3), give the formal solution of the problem. 

The modulus of A,, which represents the amplitude of the waves over the sill 
in response to an incident wave of unit amplitude, is shown as a function of the 
non-dimensional frequency z = acr/(gh,)* in figure 9, for the typical case h,/h, = A. 
(To avoid confusion, only the even harmonics n = 0 , 2 , 4 , 6  are shown.) As can be 
seen, the response is markedly peaked at  values of z close to the zeros of G(z)  
determined in the previous section, especially those zeros which lie close to the 
real axis and correspond to trapped modes. 

When z lies close to one such value z,, say, we have approximately 

G(z)  + ( ~ - 2 ~ )  CJ'(z0) (7.9) 

and so if - y denotes the imaginary part of zo (zo = to - iy )  we have 

(7.10) 
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a d  (ghJ * 
FIGURE 9. Graphs of \&I, for h1/& = +; and m = 0, 2, 4 and 6, giving the 

amplitude of the response as a function of the frequency of the incident wave. 
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The peak value of the response is thus achieved when 5 + to, and 

(7.11) 

The width of the response curve, that is to say the difference in 6 between points 
at half the peak height, is 2 J3 7. 

2 
maxIAn\ + 

E W  I G'(Z0)  I * 

0 10 

'I 

L 

FIGURE 10. Graphs of JB,I for h,/h, = +; and n = 0, 2, 4 and 6, giving the amplitude of 
the scattered waves as a function of the frequency of the incident wave. 

In terms of the constants 

which occur in Q 8, we 

D,, 
have 

D 
€7 

max \An\ = -. 

(7.12) 

(7.13) 

Both D and Dl(n-7) are given in table 2 .  From these it can be seen how large are 
the amplitudes that can be built up inside the sill by the trapping effect; also 
how narrow are the response curves. It will be recalled that the ordinary trans- 
mission coefficient for a long wave approaching a straight step normally (that is 
to say theratio of the transmitted wave amplitude to theincident wave amplitude) 
is 2 / (  1 +e) (see Lamb 1932; Bartholomeusz 1958). In  the present instance ( E  = g) 
this ratio equals 1.6. 

The amplitude of each wave in the series (7.3) is also proportional to Jfl(k1v) ,  
that is to say to J,(r/a . x )  where x = - i7 is the quantity given in table 2. Now 
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the maximum value of Jn(6) occurs in the neighbourhood of the turning-point 
5 = n and is given approximately by 

rnaxJ,(C) = 0.675n-9 (7.14) 

(see the appendix). This weak dependence on n does not affect the order of 
magnitude of the results derived from table 2 .  Outside the neighbourhood of the 
critical region Jn(E) diminishes like n-4. 

Consider now the scattering coefficient IBnl. The behaviour of IB,I when 
h,,/h, = and n = 4 is shown in figure 10. In  contrast to / A n / ,  it is possible for 
lB,l to vanish identically at certain frequencies. The amplitude of the scattered 
wave is then zero. An analogous effect occurs in the scattering of electrons by 
rare gas atoms, where it is known as the Ramsauer-Townsend effect (see Schiff 
1949, $109). 

The phenomena described in the present section are also very similar to the 
scattering of underwater sound by a gas bubble. When the frequency of the 
incident sound wave lies close to the fundamental resonant frequency of the 
bubble, the amplitude of the induced oscillation may be greatly magnified. 
However, in contrast to the previous examples, viscosity also plays an important 
part, resulting in large coefficients of absorption (Albers 1960). The effect of 
viscous damping in our present problem will be considered in $11. 

8. The response of a circular sill to a travelling pulse 
Whereas the probIem treated in $ 7  was analogous to the excitation of an 

acoustical resonator or a bell by a sound of constant pitch, it may be interesting 
also to investigate the response of the circular sill to a travelling pulse. This 
corresponds to striking the bell with a shock wave. 

A straight line-pulse travelling in the x-direction (0 = 0) in water of depth h2 
may be represented by 

6 = ( W 2 )  @IC2-% (8.1) 

where c2 = (gh2)4, g 2  = c2la (8.2) 

and 8(t) denotes the Dirac delta-function. The latter may be represented by the 
improper integral 

(8.3) 

where C denotes the contour running from -a to 00 just above the real axis, 
as in figure 11. The response of the system to such a pulse can be written down 
immediately from the solution of the previous section. We shall consider only the 
disturbance over the sill ( r  < a). This is given by 

m 

5 = I;: Pn(r,t)eid, (8.4) 
n=-cc 

where (8 .5)  
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and A ,  is given by ( 7 . 7 ) .  Thus, in the notation of S 7 ,  we have 

where i = crt/z = t(gh,)&/a 

FIUURE 11. A sketch of the contours C and C' and of the zeros of G(z) 
when hJh, = &- and n = 6. 

and z denotes m/(gh1)% as before. 
The integrand is regular everywhere except for poles at the zeros of G(z) ,  and 

for a logarithmic irregularity at  the origin. All the poles lie below the real axis, 
and the plane is usually cut from 0 to  -a. When E < - 1 the integrand can be 
deformed into an infinite semicircle in the upper half-plane and vanishes identi- 
cally. When t > 1 the integrand can be deformed into an infinite semicircle in the 
lower half-plane, minus 2ni times the residues a t  the poles of the integrand, plus 
an integral along the path C' running up the negative real axis on the second sheet 
of the Riemann surface and down the imaginary axis on the first sheet, as in 
figure 11. Thus we have 

P,(r, t )  = X D,, J,(r/ax,) exp ( - i z k t )  + R,, (8.8) 
k 

where 

and (8.10) 

z-plane 

The summation with respect to k extends over all the zeros zk of G(z) .  Thus 
equation (8.8) expresses the response to  the impulse as the sum of a number of 
free waves of amplitude 

D = IDnkI (8.11) 
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each decaying exponentially in time (since Y(z,) < 0 )  plus a remainder term R, 
which represents a transient ‘tail ’. 

The amplitudes D of the decaying modes are tabulated in table 2.1- To evaluate 
R, asymptotically for large values of E we note that near x = 0 we have 

G(z) = P f Q ,  I 
where 

(8.12) 

and the positive or negative sign is to be taken according as x lies to the right or 
left of the imaginary axis. Thus 

Since 
(./a. x ) ,  

J,(r/a.z) N ___ 
2,n! 

it  follows by Watson’s lemma that as f -+ co, 

(8.13) 

(8.14) 

Thus R, dies away asymptotically like t-(3n+1). For moderately large values of f  
this transient tail will be much less than the amplitudes of the slowly decaying 
trapped modes. 

9. Wave trapping round islands of more general shape 
In  the following section we shall consider whether the phenomenon of wave 

trapping, which has been demonstrated for the circular sill, is displayed also when 
the topography of the sea floor is of a more general kind. 

(i) Circular island with sill 

Suppose that a meridional section of the island is as shown in figure 12, that is to 
say a central island of radius b surrounded by a circular sill of radius a and 
depth h,, beyond which is deep water of depth h2 > h,. We have seen already that 
in the absence of the central island it is possible to have waves trapped on the 
shelf and that in such modes there is very little energy inside the inner critical 
circle, of radius nlk ,  where k, = c/(ghl)i. Hence if b < n/k l ,  that is to say if the 
radius of the island is less than the inner critical radius, its presence will have 
little effect on that particular mode. In  other words we may infer the existence of 
trapped modes of oscillation in the presence of the central island as well as in its 
absence. For any radius b,  provided it is less than a,  the ray theory indicates that 
such modes will exist, though when b approaches a (that is to say if the shelf is 
relatively narrow) then for a trapped mode to exist n would have to be large. 

t When m > 0 the contribution from terms P-,(T, t )  duplicates that from P%(T, t )  so the 
amplitudes must be multiplied by 2. 
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Although some of the free modes might not be affected by the presence of the 
island, the latter will certainly affect the detailed generation of these modes by 
a travelling pulse as described in 3 8, or by another such mechanism, for the 
island would necessarily intersect the ray paths of the incident waves. 

FIGURE 12. Cross-section of an island with a surrounding sill. 

It should also be pointed out that the presence of the island may make possible 
the existence of other types of trapped modes, namely those whose rays are 
reflected both internally a t  the edge of the sill and at  the shoreline. 

(ii) Circular symmetry; the general case 

Next let us suppose that the depth h is a more general function of the radius r 
(but still independent of 0). Under what conditions may we expect trapped 
oscillations? Consider first a ray trajectory a t  some point where the path is 
locally transverse, that is to say the wave crests are parallel to the local radius 
vector. Then for the ray to be refracted inwards it is clearly necessary that the 
curvature of the trajectory be greater than the curvature of a circle with radius r .  
This leads to the condition 

where c is the local speed of propagation. Hence 

ar ”(’> r > 0 

or since in this case c = (gh)& we have 

$) > 0. (9.3) 

In other words the depth must increase more rapidly than the square of the 
radius. This conclusion is also in agreement with the analysis of 3 5. For if h/r2 
increases without limit then coefficient of R in equation (5.4) or (5.5) must 
ultimately become negative. 

A zone in which equation (9.3) is satisfied is then capable of refracting waves 
back towards the centre. Such a zone may be called a ‘hedge’. Clearly any 
discontinuity in depth, with the greater depth on the outside, is a limiting form 
of ‘hedge’. (Every ‘edge’ is a ‘hedge’.) As we have seen, hedges are not entirely 
inpenetrable, since generally there is a fringe of radiation on the outside. Moreover, 
hedges are effective only when the angle of incidence exceeds a certain critical 
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angle. Nevertheless, in the case of circular symmetry a ray once refracted back 
towards the centre by a hedge must ultimately approach the hedge again at the 
same angle. Hence the energy will be contained with only a small leak of energy 
to the outside. 

The concept of a hedge is evidently equivalent to that of a potential barrier in 
quantum mechanics. In  this connexion Eckart (1951) has drawn attention to the 
exact analogy between the ray-paths described by waves propagated with 
velocity (gh)B and the paths described by a smooth particle sliding freely on the 
reciprocal surface 6 = - l / h ,  provided that the object starts with the kinetic 
energy that would be acquired in falling from the level 5 = 0. 

(iii) Effects of asymmetry 

In  more general forms of bottom topography a sufficient condition for trapping 
of wave energy appears to be the existence of at least one cmtinuous ray-path 
surrounding the island. However, the curvature of the ray-path must not be so 
great that appreciable energy is lost at  the sharp corners by diffraction. 

In  the case of slight departure from circular symmetry an interesting pheno- 
menon appears in the form of a splitting of the frequencies into slightly different 
pairs. A simple analogue is the slightly asymmetrical bell, discussed by Rayleigh 
(1945, chapter 10). Consider, for example, a standing-wave mode (in a bell with 
perfect circular symmetry) which has an azimuthal wave-number n = 2. The 
form of the bell when oscillating in such a mode will be an ellipse of small eccentri- 
city, with nodal planes at, say, 8 = 0, @r, n and &r. There will exist a second and 
similar standing mode with nodal planes relatively displaced by in, that is to 
say at 8 = in, $zr, $n and zn. The frequencies of the two modes will be equal. 
Suppose now that a small mass is added to the bell at the point 8 = 0. This will 
not affect the radial motion? of the bell in the f i s t  mode nor the elastic restoring 
force. But, lying at an antinode of the second mode, it will increase the inertia in 
the second mode. Hence the frequencies of the two modes will be split. I n  a 
similar way, any slight asymmetry in the circular shape of an island or sea mount 
will result in slight differences in the inertia of pairs of modes whose nodal lines 
are displaced relative to  one another. Hence we expect the existence of pairs of 
modes of the same azimuthal wave-number n and radial wave-number rn, but 
of slightly different frequencies. 

The modes just described are stationary, that is to say they have fixed nodal 
lines (where the radial displacement vanishes). Denote one such pair by C1 and 
c2 respectively. Suppose that these are of equal energy. Consider now the motions 
consisting of the sum of the two modes, in quadrature. That is to say let 

c+ = 5 1 + i c 2 ,  c- = c 1 - i c 2 .  (9.4) 

Since el and C2 represent standing waves it follows that c+ represents a progressive 
wave travelling round the centre in the clockwise direction, say; and <-represents 
a wave travelling in the anticlockwise sense. But because the frequencies are 
slightly different the phase difference between c+ and c- will slowly change. 

t However, the transverse inertia will be affected. 
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Hence <+ will eventually be converted to t;- and vice versa. In  other words there 
will be an exchange of energy between the progressive modes; the effect of 
slightly asymmetry is to introduce a coupling between them. 

We may show that under certain circumstances the frequency splitting due to 
a slight asymmetry will be of second-order in the deformation of the island. 
Imagine a sill of uniform depth, as in 5 6, whose edge is given not by r = a but by 

r = a(1 + 7 cosptl), (9 .5)  

where q is a small quantity and p is an integer 2 2 .  Consider a mode which in the 
case of circular symmetry has an azimuthal wave-number n. Then, in the case of 
symmetry, the ray-paths will meet the edge of the sill a t  points given by 

r eio = a exp [i( 2nlc/n + /I)], (9.6) 

where /3 is a constant and lc is an integer running from 1 to n. In  the asymmetrical 
case, the inter-reactions of the ray-path with the edge of the sill will be given by 

(9.7) reso = a( 1 + 7 cosp8,) exp (iOk), 
where the 0, are angles which differ, in general, from (2nkln + p) by amounts of 
order 7. It is easy to see that when n > 2 the difference in the total path length 
caused by replacing 8, by (2nkln + /I) is of order v2. Then, by writing down the 
expression for the total path-length and using the fact that 

n 

k = l  
2 exp (2nplciln) = n or 0 

according as p is or is not a multiple of n, it  can be shown that the total path- 
length differs from the path-length in the case 7 = 0 by an amount of order r2,  
except when p is a multiple of n. 

We infer that the frequency splitting due to asymmetry is of the second-order 
in the deformation 72, except possibly when the azimuthal wave-number n of 
the mode is a submultiple of one of the harmonics p involved in the asymmetry 
of the island. 

This is easily verified by geometrical methods in the case when the island is of 
elliptical shape (p = 2 )  and the mode considered has a wave-number n equal to 4. 

A more precise calculation of the frequency splitting due to asymmetry will 
be given in another paper. 

10. Effects of the earth’s rotation 
In  this section we shall investigate briefly the effect on these long waves of 

coriolis forces due to the rotation of the earth. 
One effect of the rotation is suggested by an investigation due to Reid (1958) 

who calculated the effect of coriolis forces on edge waves over a bottom of 
uniform gradient. He found that in the northern hemisphere gravity waves 
travelling with the shoreline to their left have their speed of propagation increased 
by the earth’s rotation, and those with the shoreline on their right have their 
speed diminished. Hence, we may expect that waves travelling round a circular 
island in the same direction as the earth’s rotation will have their speed increased 
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(relative to the earth), and those travelling in the opposite direction will have 
their speed diminished. Thus we expect the earth’s rotation to split the fre- 
quencies of pairs of progressive modes (just as the assymmetry splits the fre- 
quencies of pairs of standing modes). 

To pursue the present problem analytically, we note that the general equations 
corresponding to (2.1) and (2.2) but with the coriolis forces included, are 

--fv = - - - (qC),  
au 

ax a \  at 
(10.1) 

where f denotes the coriolis parameter. The continuity equation (3.3) is the same 
as before. Assuming that u, v and 5 are proportional to e-iut we have from (10.1) 

whence 

I a - iau - f v  + - ( g g  = 0, ax 
fu-ivv+-(gC) a = 0, 

a Y  

and so on substituting in (2.2) 

( V 2 + y )  c+zVh.Vc-T-(&.Vh*Vc) ,  1 f l  
s a h  

(10.2) 

(10.3) 

(10.4) 

where w denotes a unit vector in the 2-direction. At a discontinuity in the depth 
the boundary conditions are that 

5 is continuous (10.5) 

and that hu . n is continuous. From (10.3) this implies 

h - - - is continuous, (2 2:) (10.6) 

where n, s are measured normally and tangentially to the discontinuity in the 
same right-handed sense as x, y. We shall see that the additional term in (10.6) is 
of particular significance. 

In the special case of water which is of locally uniform depth, (10.4) reduces to 

( . Z + ! y ) i  = 0. (10.7) 

Supposing that the period of the oscillations is small compared to a pendulum 
day, we shall have v 9 f. In  the following we shall agree to take into account 
quantities of order f /a  but to neglect those of order ( f / ~ r ) ~ .  It is clear then that 
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under these conditions (10.7) reduces simply to the equation (2.10) for long waves 
in the absence of rotation. However, the boundary condition (10.6) introduces 
a first-order difference. 

Consider first a straight step or discontinuity in depth as in $3,  and let us assume 
a solution in the form (3.4). The boundary conditions (10.5) and (10.6) now give 
A = C and 

Therefore altogether we find 

h,[l,B - m(f /a)  A] = h,[ - I ;  - m ( f / 4 ]  c. (10.8) 

I ,  h, cos Z,x - [I.& + m(f /a )  (hz- h,)] sin I, x (x < O ) ,  
(x > 0). 2, hl e-@ 

5 = exp [ i (my - at)] x 

(10.9) 

The effect of the additional term on the right of (10.9) is to increase the phase 6 of 
the waves just inside the edge of the sill by an amount 

(10.10) 

This extra phase must then be accommodated over the sill. Similarly on inserting 
the boundary condition u = 0 a t  x = - a we find that an additional phase 

(10.1 1) 

must be accommodated at the other side of the sill. Hence, if the frequency of the 
waves were to remain unchanged the width of the sill would have to be increased 
by an amount (6’ + #‘ ) / I , .  The actual change in frequency will be the same as if the 
width of the sill were decreased by this amount. Now the effect of decreasing the 
width of the sill (in the absence of coriolis forces) will be to increase the frequency, 
in general. Hence if (6‘ -I- 6’’) is positive the frequency must be increased. 

Now if rn, f and a are all positive, that is to say if the waves travel in the 
positive y-direction in the northern hemisphere, then from (10.10) and (10.11) we 
see that 6‘ and 6” are both positive. Hence, in the northern hemisphere, those 
waves which progress along the shore with the shoreline to their left have their 
frequency increased, and those which travel in the reverse sense have their 
frequency diminished, in agreement with the result of Reid (1958) for a uniformly 
sloping bottom . 

Consider now the effect of rotation on the sill waves discussed in 3 6. We may 
estimate the wave frequency by an equation analogous to (6.10). In  fact we have 
only to add to the right-hand side of (6.10) the term 

(10.12) 

where m = n/a = 1,cotu (10.13) 

by (6.8). Hence we have as an approximate equation 

tan [n(tanu-u)-&r] = J[(h2/h,){(h2/hl- 1) cotzu- I}] 

+ (f/a) (h,/h, - 1) cot u. (10.14) 
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From figure 3 it  js clear that when 0 < f 1.. < 1 the effect of the last term is to 
increase the value of u by an amount nearly proportional to f /cr; and therefore 
to  increase c, by equation (6.11). Hence the speed of waves travelling in the anti- 
clockwise direction is increased, and the speed of waves travelling in the clockwise 
direction is decreased, as was expected. 

To find the small difference ACT in the frequency due to the Earth’s rotation 
we note that since CT, by (6.11)’ is proportional to secu we have 

ACT _ -  - tan u Au. 
CT 

The corresponding increment Au is found from the relation 

~ A U  = &!$ Au + (f /a )  (h,/h, - 1) cot u, 
dU du 

(10.15) 

( 10.16) 

where PI and F2 denote the functions on the left and right of (6.10) and u is one 
of the roots of (6.10). From the last two equations we deduce that 

On carrying out the differentiation we find, after some reduction, 

(10.17) 

(10.18) 

where y = h2/h,, s = sec2u = ([/n),. (10.19) 

It will be noted that as n + oc) leaving y and s constant, the ‘beat frequency’ ha 
is asymptotically proportional to f In. 

The values of Au/ f corresponding to the frequencies already calculated in 
table 1 are shown in table 3. 

n =  

2 3 

0.0426 0.0252 
0.1200 0.0432 
- 0.0832 

4 5 

0.0179 0.0139 
0.0248 0.0175 
0.0462 0,0254 
0.0000 0.0505 

- - 

0.0890 0.0685 
- - 

- 0.0282 

6 

0.0114 
0.0136 
0.0176 
0.0266 
0.0549 

0.0549 
0.0400 
0.0540 

7 

0.0096 
0.0111 
0.0135 
0.0180 
0.0282 
0.0580 
0.0457 
0.0700 
0.0789 

TABLE 3. Changes in the frequencies of trapped modes of oscillation 
due to the rotation of the earth: values of Aaif 

8 

0.0079 
0.0094 
0~0110 
0.0136 
0.0186 
0.0302 
0.0389 
0.0630 
0.0797 

It is interesting to compare these results with those for a bell rotating about its 
axis of symmetry. Bryan (1890) calculated the effect of rotation on the normal 
modes of a cylindrical bell. He found that if Q denotes the angular velocity of the 
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bell about its axis, then the nodal lines of the oscillation follow the direction of 
rotation but with a smaller angular velocity given by 

n2- 1 

n2+ 1 Q, (10.20) 

where n is the azimuthal wave-number. Thus, relative to an observer in the 
rotating frame (as on the rotating earth) the nodal lines tend to drift in the 
opposite direction to the rotation, with angular velocity 

- 2Q 
n2+1 (10.21) 

If these standing oscillations are considered as the sum of two progressive 
oscillations, one travelling in the same sense as Q and the other in the opposite 
sense, then it follows that the frequency of the mode progres :ing in the same sense 
as the basic rotation is slowed down (in the rotating frame of reference) by an 
amount equal to 2nQ 

n2+1' (10.22) 

Thus in the case of a rigid bell, the effect of the coriolis forces on the phase 
velocity is in the reverse sense, compared with the effect on edge waves. The 
magnitude of the frequency shift for large n is however similar. For since f is of 
order 2rR, we see from (10.22) that the change in frequency due to the rotation is 
again of order f In. 

Combining the results of the present section with those of 0 9 we can now see 
qualitatively what is the effect on free waves of coriolis forces and of slight 
asymmetry present simultaneously. The coriolis forces induce a slight difference 
in frequency between the modes progressing round the island in the clockwise 
and in the anticlockwise sense, those in the anticlockwise sense travelling faster, 
in the northern hemisphere. The asymmetry of the island induces an exchange of 
energy between these two progressive modes. 

Consider then a record of the surface elevation as seen by a fixed observer. If 
there were no asymmetry, then in a given small frequency band he would see in 
general the sum of two waves of slightly differing frequencies: 

5 = A ,  cos [(CT + A g )  t + el] + A ,  cos [(g - ACT) t + e,], (10.23) 

where A,, A,  and el, e, represent the instantaneous amplitudes and phases of the 
waves travelling in the anticlockwise and clockwise senses. When A, and A ,  were 
equal the record of 5 would exhibit slow beats of frequency ACT. 

If now the island is unsymmetrical there will be a slow exchange of energy 
between the two modes, so that A,, A ,  and el, e2 will themselves vary with a slow 
frequency A'cr, say. Thus a t  one epoch the wave record may exhibit only waves of 
frequency (CT + ACT) and at another epoch it may exhibit only waves of frequency 
(c-AcT). If, however, A'cr < ACT that is to say if the effect of asymmetry is only 
slight compared with the effect of rotation, then there will still be an epoch when 
A ,  + A, and beats are observed. If A'o is not small compared with ACT the com- 
bined motion is more complicated. 

In  the above discussion we have of course neglected the damping of the waves, 
which may be important in practice. 
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11. Effects of viscous damping 
Since the amplitude of the trapped modes excited by an incident wave is 

critically dependent on the loss of energy to infinity, which may be very small, 
it  is important to consider' the effect on the waves of other energy losses, in 
particular the loss due to viscous dissipation. 

Suppose first that the flow is laminar. In  shallow water, the principal loss of 
energy will take place in the boundary layer near the bottom. If u,, denotes the 
horizontal velocity just outside the boundary layer (u0z  e-iGi) then it is easy to 
show (cf. Lamb 1932) that the horizontal velocity within the layer is given by 

u = uo( 1 - e-ae), (11.1) 

where 4 o! = (-+/up, W ( a )  > 0, (11.2) 

zis the vertical distance above the bottom and vdenotes the kinematical viscosity. 
The rate of dissipation of energy per unit horizontal area of the bottom is given by 

(11.3) 

and on substitution for u and taking mean values with respect to the time t we find 

(11.4) 

On the other hand the mean kinetic energy in a vertical column of unit section is 

(11.5) 
given by 

The total mean energy E per unit area is twice this. Hence we have 

tPlu:l h. 

(11.6) 

This quantity is proportional to the loss of energy per unit cycle. It is of the same 
order of magnitude as the ratio of the boundary-layer thickness (v/a)* to the 
mean depth h. 

The quantity (11.6) is to be compared with the ratio y / f  in table 2. Only if 
(11.6) is small compared with y/c can the viscous damping be neglected. 

Consider for example waves of period 6 minutes in water of depth h = lOOm 
(the assumed depth of water over the sill). Then c + 0.017 see-1, and since 
u = 0.01 cm2/sec it follows that (v/u)*/h is of order Inspection of table 2 
then shows that there may indeed be some trapped modes for which the viscous 
damping, if laminar, is negligible. 

If, on the other hand, the motion is turbulent, due to the roughness of the 
bottom or the magnitude of the wave amplitude or to the presence of other strong 
currents, then the wave damping may well be increased by one or two orders of 
magnitude. Hence the existence of trapped modes of appreciable amplitude will 
in practice depend somewhat on the circumstances. 

52 Fluid Mech. 29 
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12. The response to a broad-band spectrum. 
In $ 7 we calculated the response of the waves over a circular sill to radiation of 

a particular frequency falling on it from infinity. However, the background 
radiation in the ocean more probably has a continuous spectrum. Let us then 
consider the response of the waves on the sill in that case. 

Let E,(o) denote the spectral density of the waves in the deeper water, that is 
to say, let the contribution to the mean square wave-height from frequencies 
in the range (o ,o+dg)  be equal to E,(g)do. If we neglect for a moment the 
viscous damping and the effects of asymmetry and coriolis forces, then by $ 7  
the spectral density E ( o )  of waves over the sill is of the same order as 

2Em(o) (12.1) 

(The factor 2 arises from the presence of two waves, one travelling round the 
island in each direction.) This is the spectral densihy that would theoretically be 
measured by a very sharply-tuned filter. If we replace IAiI by its approximate 
value (7.13) and integrate over the resonant peak, assuming Em locally constant, 
we obtain for the total energy in the band: 

(12.2) 

where o1 = (ghl)i/a. Supposing this energy were distributed over the whole 
frequency range (0 ,2a) ,  the mean spectral density would still be 

(12.3) 

The quantities D/e(Crl)h are given in the last column of table 2. Since these are all 
of order unity it is evident that even with a very broad-band filter the response 
would still be prominent. 

Even if the effective value of 7 is increased by dissipation, (resulting in a 
decrease in the '&' of the resonant system) the r.m.s. amplitude of the resonant 
response will be diminished only by a factor y-*. Hence the existence of a fairly 
large energy dissipation will not necessarily be fatal to the detection of the 
trapped modes. 

13. Discussion and conclusions 
We have seen how free modes of oscillation over a circular sill are possible, 

with only a very slow leakage of energy to infinity. The trapping of the energy is 
essentially due to the waves being reflected internally at  the edge of the sill, when 
their angle of incidence is greater than the critical angle. A necessary condition 
for this trapping is that the outer critical circle shall be appreciably larger than 
the circular sill. 

The trapping effect is not limited to circular sills, or to islands of circular shape. 
A sufficient condition for trapping is that there shall be a closed ray-path com- 
pletely surrounding the island. The presence of an island in the middle of the 
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shelf or sill does not affect the oscillations, if its radius is less than the inner critical 
radius (see table 2). 

We have also seen how very large can be the response of the water over a sill 
to waves incident from outside. Even in the presence of viscous damping, the 
response of the sill to  a continuous noise background may still be quite detectable 
visually. On the other hand the background of low-frequency radiation in the 
ocean is not yet well known, so that it is not possible to estimate Em(g). 

An additional source of energy for trapped oscillations might be the action of 
horizontal wind-stresses, which are known to be more effective in shallow water. 
It is also possible that surf-beats of period 2-5 min may contribute some energy 
a t  the higher frequencies. 

We have seen that any departure from circular symmetry will produce a 
coupling between the energy of waves travelling round the island in opposite 
senses. The rotation of the earth will split the frequencies. The splitting is small; 
the beat frequency due to rotation is of order (h,/h,) (f/n) where f is the coriolis 
parameter. 

a fair degree of trapping is 
achieved only if the azimuthal wave-number n is greater than about 4. Hence it 
appears that the prominent oscillations a t  Macquarie Island, previously referred 
to, which had a regular period of 6 min may represent trapped oscillations of this 
kind. The circumference C of the island being 80 km and the mean depth h, of 
water over the shelf being about lOOm we expect the period of oscillations 
prominent at  the shore to be given by 

From table 2 it can be seen that when h,/h, = 

80km 42 
n(gh,)* - 32nm/sec n 

= -minutes. 
C _- 

With n equal to about 7 this gives a period of the same order as that observed. 
On the other hand table 3 indicates that in this case the splitting of the 

frequencies due to the rotation of the earth would be too small to account for the 
observed beat frequency of 0-33 cycles per hour. Hence the observed beats are 
more likely to be due to other causes. For example, since the ratio of the length 
of the island to its breadth is about 6:  1, the asymmetry is probably important. 

Before any firm conclusions are drawn regarding the nature of the oscillations 
at Macquarie Island it is desirable to repeat the observations over a longer period 
of time, and further, to make simultaneous observations at  more than one point 
on the coast in order to observe the relative phase of the oscillations. Such 
observations are at present being undertaken by members of the University of 
Adelaide. 

Other desirable investigations include the accurate calculation of the frequency 
splitting due to non-circular symmetry, and possibly the construction of a 
physical model of the island in which the local bathymetry could be more 
accurately represented. 

It is a pleasure to record my thanks to members of the Department of Mathe- 
matics at the University of Adelaide for their hospitality from August to 
November 1964, and particularly to Professor R. B. Potts, Professor J. R. M. 
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Radok and Dr M.N.Brearley. A first draft of this paper was prepared at 
Adelaide. For assistance with the calculations in tables 1 and 2 and for several 
useful suggestions incorporated in this paper I am indebted to Mr C. J. R. Garrett 
of Trinity College, Cambridge. 

Appendix. The maximum value of \J,([)I 

n-too, 
In the neighbourhood of the critical point [ = n it  can be shown? that as 

J,(t) - ( ; p i  [ 2 W 1  -E/n)l, (A 1) 

where Ai denotes the Airy function of the fist kind (Miller 1964). The maximum 
value of IAi (x)l is achieved when x = - 1.019 and Ai (x) = 0.5357. So we have 
asymptotically 

max IJ,I N 0 .6749na  (A 2) 

achieved when N n + O.S09n+. (A 3) 

The actual and asymptotic values of max ( J , (  are compared in table 4. From the 
agreement between these values it appears that max I J,I decreases very nearly 
as nd ,  between n = 1 and n = 8. 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 

max I J, I 
1~0000 
0.5819 
0.4865 
0.4344 
0.3997 
0.3741 
0.3541 
0.3379 
0.3244 

0.6749n-5 

00 

0.6749 
0.5357 
0.4679 
0.4252 
0.3947 
0.3714 
0-3528 
0.3374 

E 
0.000 
1.841 
3.054 
4.201 
5.318 
6-416 
7.501 
8.578 
9.647 

(n + 0.809n3) 

0.000 
1.809 
3.019 
4.167 
5.284 
6.383 
7.470 
8.548 
9.618 

TABLE 4. Maximum values of J,(E) and asymptotic approximations for large n. 
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